Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals.
نویسندگان
چکیده
We developed a class of quasi-3D plasmonic crystal that consists of multilayered, regular arrays of subwavelength metal nanostructures. The complex, highly sensitive structure of the optical transmission spectra of these crystals makes them especially well suited for sensing applications. Coupled with quantitative electrodynamics modeling of their optical response, they enable full multiwavelength spectroscopic detection of molecular binding events with sensitivities that correspond to small fractions of a monolayer. The high degree of spatial uniformity of the crystals, formed by a soft nanoimprint technique, provides the ability to image binding events over large areas with micrometer spatial resolution. These features, together with compact form factors, low-cost fabrication procedures, simple readout apparatus, and ability for direct integration into microfluidic networks and arrays, suggest promise for these devices in label-free bioanalytical detection systems.
منابع مشابه
Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals.
This work provides plasmonic crystal platforms for quantitative imaging mode biosensing and multispectral immunoassays, establishing and validating both the optical and equilibrium bases for their operation. We investigated the distance-dependent refractive index sensitivity of full 3D plasmonic crystals to thin polymeric films formed using layer by layer (LbL) assembly of polyelectrolytes as a...
متن کاملRefractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals
Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI) sensing and surface-enhanced Raman spectroscopy (SERS) as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential n...
متن کاملVisible Plasmonic Superabsorber Based on Ag Nano-island with Biosensing Capability
This article has no abstract.
متن کاملHandheld high-throughput plasmonic biosensor using computational on-chip imaging
We demonstrate a handheld on-chip biosensing technology that employs plasmonic microarrays coupled with a lens-free computational imaging system towards multiplexed and high-throughput screening of biomolecular interactions for point-of-care applications and resource-limited settings. This lightweight and field-portable biosensing device, weighing 60 g and 7.5 cm tall, utilizes a compact optoel...
متن کاملMultispectral imaging using a single bucket detector.
Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 46 شماره
صفحات -
تاریخ انتشار 2006